Menu
Follow us on

Climate change, non-indigenous species and shipping: assessing the risk of species introduction to a high-Arctic archipelago

Authors: Chris Ware, Jørgen Berge, Jan H. Sundet, Jamie B. Kirkpatrick, Ashley D. M. Coutts, Anders Jelmert, Steffen M. Olsen, Oliver Floerl, Mary S. Wisz, Inger G. Alsos

Abstract:

Aim: Anticipated changes in the global ocean climate will affect the vulnerability of marine ecosystems to the negative effects of non-indigenous species (NIS).In the Arctic, there is a need to better characterize present and future marine biological introduction patterns and processes. We use a vector-based assessment to estimate changes in the vulnerability of a high-Arctic archipelago to marine NIS introduction and establishment. Location Global, with a case study of Svalbard, Norway.

Methods: We base our assessment on the level of connectedness to global NISpools through the regional shipping network and predicted changes in ocean climates. Environmental match of ports connected to Svalbard was evaluated under present and future environmental conditions (2050 and 2100 predicted under the RCP8.5 emissions scenario). Risk of NIS introduction was then estimated based on the potential for known NIS to be transported (in ballast water or as biofouling), environmental match, and a qualitative estimate of propagule pressure.

Results: We show that Svalbard will become increasingly vulnerable to marine NIS introduction and establishment. Over the coming century, sea surface warming at high latitudes is estimated to increase the level of environmental match to nearly one-third of ports previously visited by vessels traveling to Svalbard in 2011 (n = 136). The shipping network will then likely connect Sval-bard to a much greater pool of known NIS, under conditions more favourable for their establishment. Research and fishing vessels were estimated to pose the highest risk of NIS introduction through biofouling, while ballast water discharge is estimated to pose an increased risk by the end of the century.

Main conclusions: In the absence of focused preventative management, the risk of NIS introduction and establishment in Svalbard, and the wider Arctic, willincrease over coming decades, prompting a need to respond in policy and action.

This scientific paper has been published in the Journal Diversity and Distributions, Volume 20, Issue 1, January 2014.

About FleetMon

FleetMon is the world’s leading data company in the field of vessel tracking. We provide AIS-based data solutions from our own extensive, worldwide network of AIS receivers. Thousands of antenna stations send 5,000 signals per second to our database with some of the world’s best-known and best-performing companies making use of FleetMon’s data solutions. Our mission is to make shipping more transparent and efficient. To achieve that, we monitor the fleets of the world and create relevant, actionable data widely accessible. Established in 2007, FleetMon is a privately-owned company with its headquarters in Rostock, Germany.